The Role of Personalization and Multiple EEG and Sound Features Selection in Real Time Sonification for Neurofeedback

نویسندگان

  • Sebastián Mealla C.
  • Aluizio Oliveira
  • Xavier Marimon
  • Tony Steffert
  • Sergi Jordà
  • Aleksander Väljamäe
چکیده

The field of physiology-based interaction and monitoring is developing at a fast pace. Emerging applications like fatigue monitoring often use sound to convey complex dynamics of biological signals and to provide an alternative, non-visual information channel. Most Physiology-to-Sound mappings in such auditory displays do not allow customization by the end-users. We designed a new sonification system that can be used for extracting, processing and displaying Electroencephalography data (EEG) with different sonification strategies. The system was validated with four user groups performing alpha/theta neurofeedback training (a/t) for relaxation that varied in feedback personalization (Personalized/Fixed) and a number of sonified EEG features (Single/Multiple). The groups with personalized feedback performed significantly better in their training than fixed mappings groups, as shown by both subjective ratings and physiological indices. Additionally, the higher number of sonified EEG features resulted in deeper relaxation than when training with single feature feedback. Our results demonstrate the importance of adaptation and personaliziation of EEG sonification according to particular applications, in our case, to a/t neurofeedback. Our experimental approach shows how user performance can be used for validating different sonification strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Real-time Eeg Sonification Research

Over the last few decades there has been steady growth in research that addresses the real-time sonification of electroencephalographic (EEG) data. Diverse application areas include medical data screening, Brain Computer Interfaces (BCI), neurofeedback, affective computing and applications in the arts. The present paper presents an overview and critical review of the principal research to date ...

متن کامل

Prototyping a method for the assessment of real-time EEG sonifications

This paper presents a first step in the development of a methodology to compare the ability of different sonifications to convey the fine temporal detail of the Electroencephalography (EEG) brainwave signal in real time. In EEG neurofeedback a person‟s EEG activity is monitored and presented back to them, to help them to learn how to modify their brain activity. Learning theory suggests that th...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Real Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light

The objective of this study is development of driver’s sleepiness using Visually Evoked Potentials (VEP). VEP computed from EEG signals from the visual cortex. We use the Steady State VEPs (SSVEPs) that are one of the most important EEG signals used in human computer interface systems. SSVEP is a response to visual stimuli presented. We present a classification method to discriminate between...

متن کامل

Classification of EEG Signals for Discrimination of Two Imagined Words

In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014